MI MAY $2 O 13$ INTERNATIONAL

1. Two particles A and B, of mass 2 kg and 3 kg respectively, are moving towards each other in opposite directions along the same straight line on a smooth horizontal surface. The particles collide directly. Immediately before the collision the speed of A is $5 \mathrm{~m} \mathrm{~s}^{-1}$ and the speed of B is $6 \mathrm{~m} \mathrm{~s}^{-1}$. The magnitude of the impulse exerted on B by A is 14 Ns . Find
(a) the speed of A immediately after the collision,
(b) the speed of B immediately after the collision.

Mom A before $=10 \Rightarrow$ impulse $=14 \quad \therefore 2 V A=-4$
Mom after $=2 V_{A} \quad V_{A}=-2$
b)

$$
\begin{array}{lll}
\text { CM } \quad & 5 \times 2+3 \times-6=2 x-2+3 V_{B} \\
\Rightarrow \quad & -8=-4+3 V_{B} \Rightarrow 3 V_{B}=-4 \therefore V_{B}=-\frac{4}{3}
\end{array}
$$

2.

Figure 1
A particle of weight 8 N is attached at C to the ends of two light inextensible strings $A C$ and $B C$. The other ends, A and B, are attached to a fixed horizontal ceiling. The particle hangs at rest in equilibrium, with the strings in a vertical plane. The string $A C$ is inclined at 35° to the horizontal and the string $B C$ is inclined at 25° to the horizontal, as shown in Figure 1. Find
(i) the tension in the string $A C$,
(ii) the tension in the string $B C$.

$$
\begin{aligned}
\overrightarrow{R F} & =0 \therefore T_{A} \cos 3 S=T_{B} \cos 2 S \\
& \Rightarrow T_{B}=\frac{T_{A} \cos 3 S}{\cos 2 S}
\end{aligned}
$$

$$
\begin{aligned}
R+\uparrow=0 & \Rightarrow T_{A} \sin 3 S+T_{B} \sin 2 S=8 \\
& \Rightarrow T_{A} \operatorname{Sin} 3 S+\frac{T_{A} \cos 3 S \sin 2 S}{\cos 2 S}=8 \\
& \Rightarrow 0.9555533 T_{A}=8 \Rightarrow T_{A}=8.37 \mathrm{~N} \\
& T_{B}=7.57 \mathrm{~N}
\end{aligned}
$$

3.

Figure 2
A fixed rough plane is inclined at 30° to the horizontal. A small smooth pulley P is fixed at the top of the plane. Two particles A and B, of mass 2 kg and 4 kg respectively, are attached to the ends of a light inextensible string which passes over the pulley P. The part of the string from A to P is parallel to a line of greatest slope of the plane and B hangs freely below P, as shown in Figure 2. The coefficient of friction between A and the plane is $\frac{1}{\sqrt{3}}$. Initially A is held at rest on the plane. The particles are released from rest with the string taut and A moves up the plane.

Find the tension in the string immediately after the particles are released.

$$
N R=33.948196
$$

$$
\begin{aligned}
\Rightarrow f_{\text {max }}=\mu N R & =\frac{1}{\sqrt{3}}(2 g) \cos 30 \\
& =g
\end{aligned}
$$

\Rightarrow total force Down the plane $=T-F_{m, x}-2 g \sin 30$
(B) $4 g-T=4 a$
(A) $T-2 g=2 a$

$$
=2 g
$$

(A) \& (B) $\quad 4 g-T=4 a \Rightarrow 4 g-T=2 T-4 g$

$$
\begin{aligned}
\therefore 3 T & =89 \\
\therefore T & =\frac{8}{3} 9
\end{aligned}
$$

4. At time $t=0$, two balls A and B are projected vertically upwards. The ball A is projected vertically upwards with speed $2 \mathrm{~m} \mathrm{~s}^{-1}$ from a point 50 m above the horizontal ground. The ball B is projected vertically upwards from the ground with speed $20 \mathrm{~m} \mathrm{~s}^{-1}$. At time $t=T$ seconds, the two balls are at the same vertical height, h metres, above the ground. The balls are modelled as particles moving freely under gravity. Find
(a) the value of T,
(b) the value of h.

$$
\text { (A) } \begin{aligned}
& s=-(s o-h) \\
& u=2 \\
& v \\
& a=-9.8 \\
& t=T
\end{aligned}
$$

(b)

$$
\begin{aligned}
& s=h \\
& u=20 \\
& V \\
& a=-9.8 \\
& t=T
\end{aligned}
$$

$$
\begin{align*}
& S=u t+\frac{1}{2} a t^{2} \Rightarrow h-50=2 T-4.9 T^{2} \quad \text { (A) } \tag{A}\\
& h=20 T-4.9 T^{2} \quad \text { (B) } 4.9 T^{2}=20 T-h \\
& \Rightarrow h-50=2 T+h-20 T \Rightarrow-50=-18 T \quad \therefore T=\frac{2 \mathrm{~S}}{9} \mathrm{sec}
\end{align*}
$$

b) $h=20\left(\frac{25}{9}\right)-4.9\left(\frac{25}{9}\right)^{2}=17.7 \mathrm{~m}$
5.

Figure 3
A particle P of mass 0.6 kg slides with constant acceleration down a line of greatest slope of a rough plane, which is inclined at 25° to the horizontal. The particle passes through two points A and B, where $A B=10 \mathrm{~m}$, as shown in Figure 3. The speed of P at A is $2 \mathrm{~m} \mathrm{~s}^{-1}$. The particle P takes 3.5 s to move from A to B. Find
(a) the speed of P at B,
(b) the acceleration of P,
(c) the coefficient of friction between P and the plane.

$$
\begin{aligned}
& N R=5.329089788 \\
& \therefore f_{\text {max }}=5.3290898 \mu
\end{aligned}
$$

$$
R+\searrow=m a
$$

$$
\Rightarrow \quad 2.484995-5.3290898 \mu=0.6 a .
$$

$$
\begin{aligned}
& s=10 \quad S=u t+\frac{1}{2} a t^{2} \Rightarrow 10=7+\frac{1}{2} a(3 \cdot s)^{2} \\
& u=2
\end{aligned}
$$

V
a
b) $\therefore a=\frac{24}{49}$
$t=3 . s$
a) $v=u+a t \quad v=2+\left(\frac{24}{49}\right)\left(\frac{7}{2}\right)=\frac{26}{7}$
c) $2.48499 s-0.6\left(\frac{24}{49}\right)=s .3290898 \mu$

$$
\therefore \mu=0.41(25 f)
$$

6. [In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due north respectively. $P M T$ Position vectors are given with respect to a fixed origin O.]

A ship S is moving with constant velocity $(3 \mathbf{i}+3 \mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$. At time $t=0$, the position vector of S is $(-4 \mathbf{i}+2 \mathbf{j}) \mathrm{km}$.
(a) Find the position vector of S at time t hours.

A ship T is moving with constant velocity $(-2 \mathbf{i}+n \mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$. At time $t=0$, the position vector of T is $(6 \mathbf{i}+\mathbf{j}) \mathrm{km}$. The two ships meet at the point P.
(b) Find the value of n.
(c) Find the distance $O P$.
a) $v=\binom{3}{3} \quad S=\binom{-4}{2}+t\binom{3}{3}$
b) $T=\binom{6}{1}+t\binom{-2}{n} \quad \begin{aligned} & 6-2 t=-4+3 t \\ & 10=5 t \quad t=2\end{aligned}$

$$
2+3 t=1+t n \Rightarrow 2+6=1+2 n \Rightarrow 2 n=7 \Rightarrow n=3.5
$$

c) $P=\binom{-4}{2}+\binom{6}{6}=\binom{2}{8} \quad \overrightarrow{O D}=\sqrt{2^{2}+8^{2}}$

$$
=8.25 \mathrm{um}(3 \mathrm{sf})
$$

7.

Figure 4
A truck of mass 1750 kg is towing a car of mass 750 kg along a straight horizontal road. The two vehicles are joined by a light towbar which is inclined at an angle θ to the road, as shown in Figure 4. The vehicles are travelling at $20 \mathrm{~m} \mathrm{~s}^{-1}$ as they enter a zone where the speed limit is $14 \mathrm{~m} \mathrm{~s}^{-1}$. The truck's brakes are applied to give a constant braking force on the truck. The distance travelled between the instant when the brakes are applied and the instant when the speed of each vehicle is $14 \mathrm{~m} \mathrm{~s}^{-1}$ is 100 m .
(a) Find the deceleration of the truck and the car.

The constant braking force on the truck has magnitude R newtons. The truck and the car also experience constant resistances to motion of 500 N and 300 N respectively. Given that $\cos \theta=0.9$, find
(b) the force in the towbar,
(c) the value of R.

$$
\begin{array}{ll}
s=100 & v^{2}=u^{2}+2 a s \quad 196=400+200 a \\
u=20 & \Rightarrow 200 a=-204 \Rightarrow a=-1.02 \\
a=14 & \Rightarrow 2 \\
t & \therefore \text { deceleration }=1.02
\end{array}
$$

Note - when breaking tension is THRUST
c) whole system

$$
\begin{aligned}
& R+500+300+0.9 T-0.9 T=2500 \times 1.02 \\
\Rightarrow & R+800=2550 \quad \therefore R=1750 \mathrm{~N}
\end{aligned}
$$

b) Car $300+0.9 T=750(1.02) \Rightarrow$ Thrust $=517 \mathrm{~N}$ $300<7$ (Sst)
8.

Figure 5
A uniform $\operatorname{rod} A B$ has length 2 m and mass 50 kg . The rod is in equilibrium in a horizontal position, resting on two smooth supports at C and D, where $A C=0.2$ metres and $D B=x$ metres, as shown in Figure 5. Given that the magnitude of the reaction on the rod at D is twice the magnitude of the reaction on the rod at C,
(a) find the value of x.

The support at D is now moved to the point E on the rod, where $E B=0.4$ metres. A particle of mass $m \mathrm{~kg}$ is placed on the rod at B, and the rod remains in equilibrium in a horizontal position. Given that the magnitude of the reaction on the rod at E is four times the magnitude of the reaction on the rod at C,
(b) find the value of m.
a) $\uparrow=\downarrow \Rightarrow 3 R=50 y \quad R=\frac{50}{3} g \quad 2 R=\frac{100}{3} \mathrm{~g}$.
$B^{2} \quad \frac{100}{3} g \times x+\frac{50}{3} g \times 1.8=50 y \times 1$

$$
\Rightarrow \frac{100}{3} g x=20 \% \quad \therefore x=0.6 \mathrm{~m}
$$

b)

$B^{2} \quad 4 R \times 0.4+R \times 1.8=50_{g} \times 1 \Rightarrow 3.4 R=5 \mathrm{~g}_{\mathrm{g}}$

$$
\therefore R=\frac{250}{17} \mathrm{~g}
$$

$$
\begin{aligned}
& \uparrow=\downarrow \Rightarrow 5 R=S O_{g}+m g \Rightarrow \frac{1250}{17} g=\frac{850}{17} g+m g \\
& \therefore M=\frac{400}{17} 23.5 \mathrm{~kg}
\end{aligned}
$$

(3st)

